Identifying the Pertinent Features of SMS Spam
نویسندگان
چکیده
Mobile SMS spam is on the rise and is a prevalent problem. While recent work has shown that simple machine learning techniques can distinguish between ham and spam with high accuracy, this paper explores the individual contributions of various textual features in the classification process. Our results reveal the surprising finding that simple is better: using the largest spam corpus of which we are aware, we find that using simple textual features is sufficient to provide accuracy that is nearly identical to that achieved by the best known techniques, while achieving a twofold speedup.
منابع مشابه
An Effective Model for SMS Spam Detection Using Content-based Features and Averaged Neural Network
In recent years, there has been considerable interest among people to use short message service (SMS) as one of the essential and straightforward communications services on mobile devices. The increased popularity of this service also increased the number of mobile devices attacks such as SMS spam messages. SMS spam messages constitute a real problem to mobile subscribers; this worries telecomm...
متن کاملExploiting Latent Content based Features for the Detection of Static SMS Spams
As the use of mobile phones grows, spams are becoming increasingly common in mobile communication such as SMS, calling for research on SMS spam detection. Existing detection techniques for SMS spams have been mostly adapted from those developed for other contexts such as emails and the web without taking into account some unique characteristics of SMS. Additionally, spamming tactics is constant...
متن کاملA Bi-Level Text Classification Approach for SMS Spam Filtering and Identifying Priority Messages
Short Message Service (SMS) traffic is increasing day by day and trillions of sms are sent and received by billions of users every day. Spam messages are also increasing in same proportionate. Numbers of recent advancements are taking place in the field of sms spam detection and filtering. The objective of this work is twofold, first is to identify and classify spam messages from the collection...
متن کاملSMS Spam Filtering Technique Based on Artificial Immune System
The Short Message Service (SMS) have an important economic impact for end users and service providers. Spam is a serious universal problem that causes problems for almost all users. Several studies have been presented, including implementations of spam filters that prevent spam from reaching their destination. Naïve Bayesian algorithm is one of the most effective approaches used in filtering te...
متن کاملCharacterizing SMS spam in a large cellular network via mining victim spam reports
In this paper 1 a study of SMS messages in a large US based cellular carrier utilizing both customer reported SMS spam and network Call Detail Records (CDRs) is conducted to develop a comprehensive understanding of SMS spam in order to develop strategies and approaches to detect and control SMS spam activity. The analysis provides insights into content classification of spam campaigns as well a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012